
Sustainable Land Management – A New Approach Technology & Climate Change – The Potential for Impact on Land Value?

Prof. John Gilliland OBE

Professor of Practice, Queens University Belfast; Chair, ARC Zero Special Advisor, AHDB; Owner, Brook Hall Estate.

22nd March 2024

2014, Independent Expert Working Group Set Up Inclusive of Farmers, Land Owners, NGOs, Policy & Food Chain

Inspirational Ideas

Delivering Farm Profitability and Better Environmental Performance using multi-functional technologies: Ingredients for a Sustainable Agriculture Strategy for Northern Ireland

Sustainable Agriculture Land Management Strategy Launched, 2016 With Written Support of Farmers Union & NGOs

B R O O K H A L L Estate & Gardens

Observations N. Ireland Environmental Performance, 2016

Since 2004 – N balance down 10%; N efficiency up 12% P balance down 32%; P efficiency up 28.5% N levels in Water, Good, 15-20mg

But

- 62% of Water Bodies failing Good Quality Status
- 80% of P was entering rivers by "Over Land" flow of excessive rainfall
- The "Tail" of our Phosphate legacy was greater than 50 Years....

Observations on Farming Production N. Ireland Farm Efficiencies & Practices, 2016

- Grass Dry Matter Utilisable Yields – Average, 5.1t/ha/yr

- Top 5%, 16t/ha/yr

- Soil Analysis Only 2% of acreage analysed on an annual basis
- Soil pH 64% land below pH 6, ??% land at pH 6.5 (optimal for legumes)
- Soil optimal fertility 18%
- Land planted in trees 6%
- Land rented on a 11 month lease (conacre) 30%

B R O O K H A L L Estate & Gardens

Recommended - If you can't Measure you can not Manage.... The use of New Measuring Technologies on all farms, at individual field scale

Aerial LiDAR Survey at 40 scans per metre

Soil Sampling to one metre deep

When repeated every 5 yrs. measures actual change, essential for TIER 3

Government Response – A Pilot in Three River Catchments Plus, "light touch" in N. Ireland wide pilot

Level of Farmer Participation – 73% in Catchments

River Bann – 513 farms, 7,340 fields, 11,547 ha Colebrooke – 289 farms, 5,059 fields, 13,108 ha Strule - 289 farms, 4,677 fields, 16,989 ha

Rest of NI. - 522 farms, 12,629 fields, 22,220 ha

Total, 1,613 farms, 63,000 ha, £2.3m of EU & NI Public Funding

Results from Pilot in Three River Catchments

Including the N. Ireland wide pilot

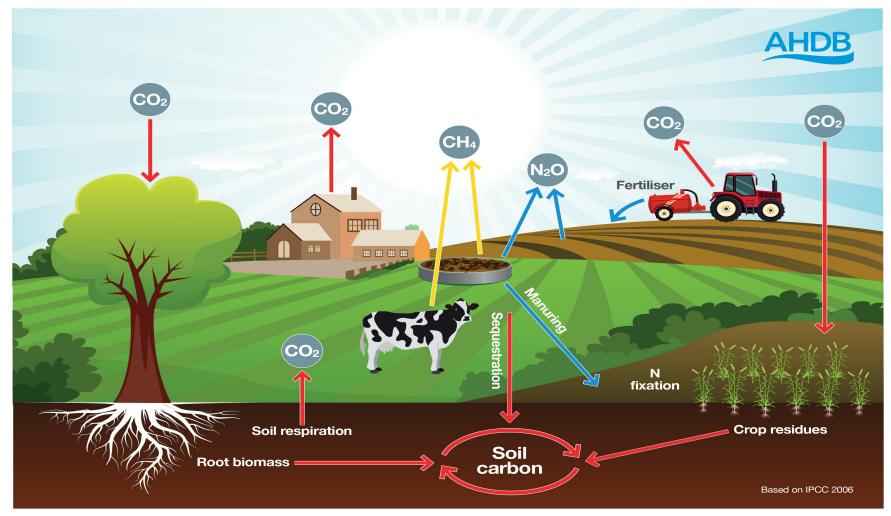
Behavioural Change Survey by Leeds University

- 86% Changed fertiliser type used
- 80% Increased lime usage
- 68% Changed fertiliser quantity
- 28% Changed quantity of slurry imported or exported

"Run off" Risk Maps were particularly useful

An EIP Operational Group - Accelerating Seven N. Irish Farms towards Net Zero

Roger & Hilary Bell Sheep Simon Best Arable & Beef Patrick Casement Sheep & Sucklers John Egerton Suckler Beef John Gilliland Willow & Dry Stock Hugh Harbison Dairy Ian McClelland Dairy


Agriculture, Environment and Rural Affairs www.daera-ni.gov.uk

"Net Zero:" Sum of Emissions equals Sum of Sequestration

Adjusted for any fossil fuel CO2 emissions displaced by Renewables & for any methane emissions reduced by waste management

It is not about Zero Emissions.....

Where did we start..... We Learnt our Numbers.....

Baselined & Benchmarked.....

Where did we start..... We Learnt our Numbers.....

Baselined & Benchmarked.....

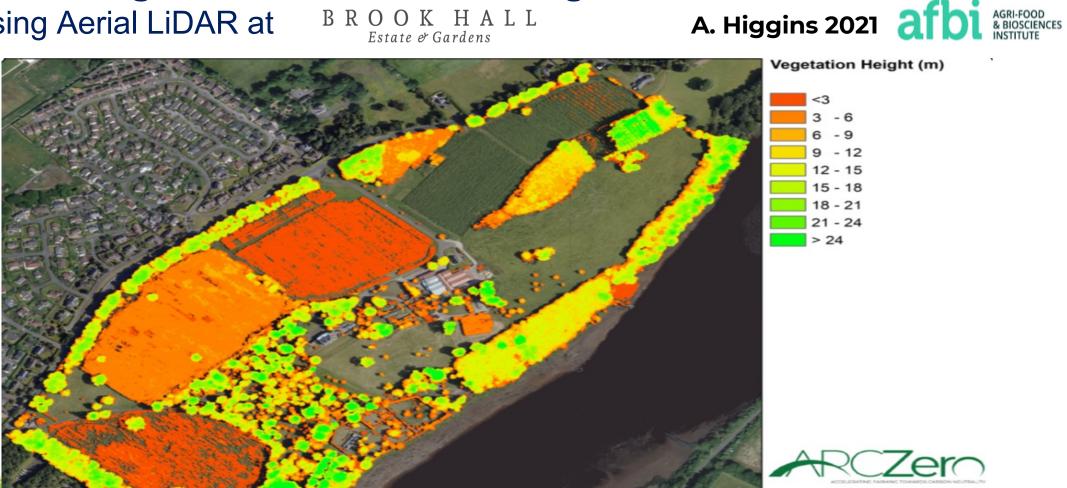
- GHG Emissions
- Carbon Sequestration
- Carbon Stocks in Soil
- Carbon Stocks in Trees
- Net Carbon Position
- Behavioural Change
- Delivering other Natural Capital

Net Carbon as a Percentage of Gross Emissions

TIER 1 Sequestration Module

2021 Agrecalc Analysis	Enterprises	Gross Emissions Gross Sequestration t CO2-e/yr t CO2-e/yr		Net Emissions t CO2-e/yr	% Reduction		
Ian McClelland	Dairy	1,101	309	792	28%		
Hugh Harbinson	Hugh Harbinson Dairy		549	1,459	27%		
John Egerton Beef & Sheep		1,475	444	1,031	30%		
Roger & Hilary Bell	Roger & Hilary Bell Sheep with Beef		456	298	60%		
Simon Best	Arable with Beef	1,799	738	1,061	41%		
Patrick Casement & Trevor ButlerBeef & Sheep		492	548	-56	111%		
John Gilliland	Willows with Dry Cows	151	156	-4	103%		

No two farms are the same.....


Using

Some farms will find the journey easier than others..... Some farms are beyond Net Zero already.....

Measuring Carbon in Trees & Hedges Using Aerial LiDAR at B R O O K H A L L Estate & Gardens

Measuring Carbon in Trees & Hedges

Using Aerial LiDAR at

B R O O K H A L L Estate & Gardens

A. Higgins 2021 afbi AGRI-FOOD & BIOSCIENCES INSTITUTE

		Brook	Hall Estate	Totals			
Vegetation type	Hedge Length (km)	AGB (t)	C (t)	BGB* (t)	C (t)	Total C (t)	AC
Hedge 0-4m	0.78	14.92	7.1	2.86	1.3	8.5	
Hedge 4-7m	0.35	6.36	3.0	1.22	0.6	3.6	Above
Hedge 7-10m	0.25	10.32	4.9	1.98	0.9	5.9	Bion
Hedge >10m	1.00	156.17	74.5	29.99	14.1	88.6	
Total Hedges	2.38	187.77	89.5	36.05	16.94	106.49	BC
	Canopy Area (ha)						Below
Single Trees	1.87	494.78	236.0	95.00	44.6	280.6	Bion
Deciduous Woodland	17	1352.74	645.1	259.73	122.1	767.2	
Coniferous Woodland	0.09	6.17	2.9	1.27	0.6	3.5	
Biomass	28.96	337.61	161.0	64.82	30.5	191.5	
Total	47.92	2,379.07	1,134.6	456.8	214.7	1,349.3	$\mathbf{>}$

AGB Above Ground Biomass

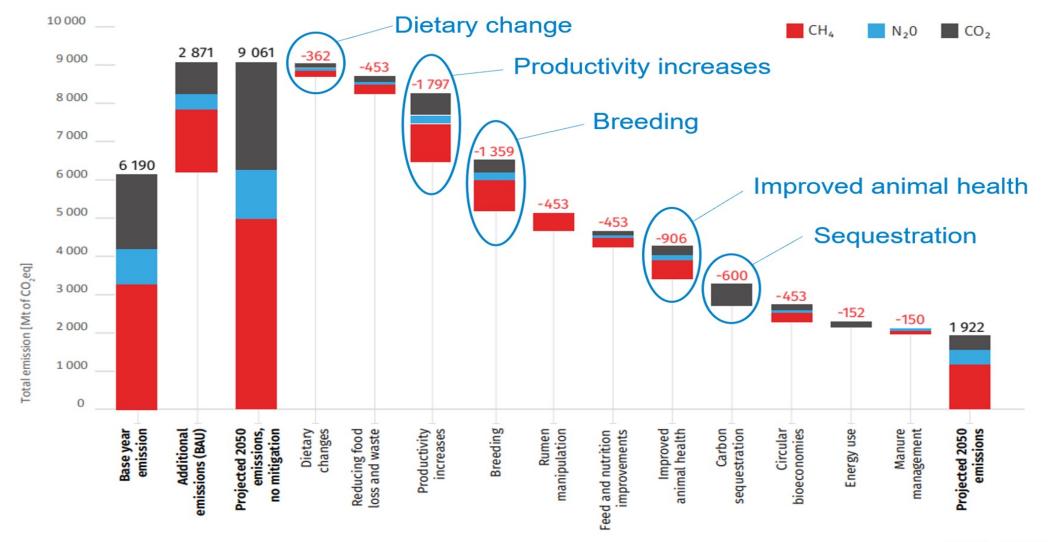
BGB Below Ground Biomass

Measuring Carbon in the Soil

Stratified for different Land Uses & Land Managements at Brook Hall

Land Category	Total ha	Soil pH	Av. LOI/SOM	No. of Soil Cores	No. of Samples	Av. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category
<10% Soil Org. Matter, Short Rotation Willow Coppice	34.2ha	рН <mark>6.</mark> 2	7.60%	55	11	4.20%	3.20%	87.1t	2,978.8t
<10% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	1.4ha	рН <mark>6.</mark> 3	9.30%	15	3	4.90%	3.10%	87.3t	122.2t
<10% Soil Org. Matter, Decideous Woodland	0.5ha	pH 5.3	9.10%	15	3	5.80%	4.10%	114.7t	57.4t
10-20% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	12.9ha	рН 6.1	13.70%	30	6	5.50%	3.40%	93.7t	1,208.7t
10-20% Soil Org. Matter, Silvopasture, no slurry/FYM	4ha	pH 4.8	14.80%	25	5	5%	2.80%	81.6t	326.4t
10-20% Soil Org. Matter, Decideous Woodland	4.6ha	pH 5.3	13%	25	5	6.90%	4.90%	136t	625.6t
Totals	57.6ha			165 Soil Cores	33 C. Samples			92.3t/ha	5,319.1t of C.

Soil Carbon at Brook Hall = 5,319 t of C, or 19,468 of CO2e


Total Carbon Stocks across ARC Zero farms.....

Total ARC Zero CO2e Stocks	Soil Carbon	Tree Carbon	Total Carbon	% C in Soil
Ian McClelland	31,813t	1,310t	33,123t	96%
Hugh Harbison	68,054t	1,969t	70,023t	97%
John Egerton	31,813t	1,310t	33,123t	96%
Roger & Hilary Bell	50,819t	688t	51,507t	98%
Simon Best	237,915t	6,493t	244,407t	97%
Patrick Casement & Trevor Butler	54,556t	4,022t	58,578t	93%
John Gilliland	19,468t	4,937t	24,405t	80%
		Total	515,166t	>

ARC Zero farms manage 515,166t of CO2e, 97% is within the Soil In 2027, Target 530,000t? Will GHG Inventory or Scope 3 Declarations Recognise?

FAO, Pathway to Lower Emissions

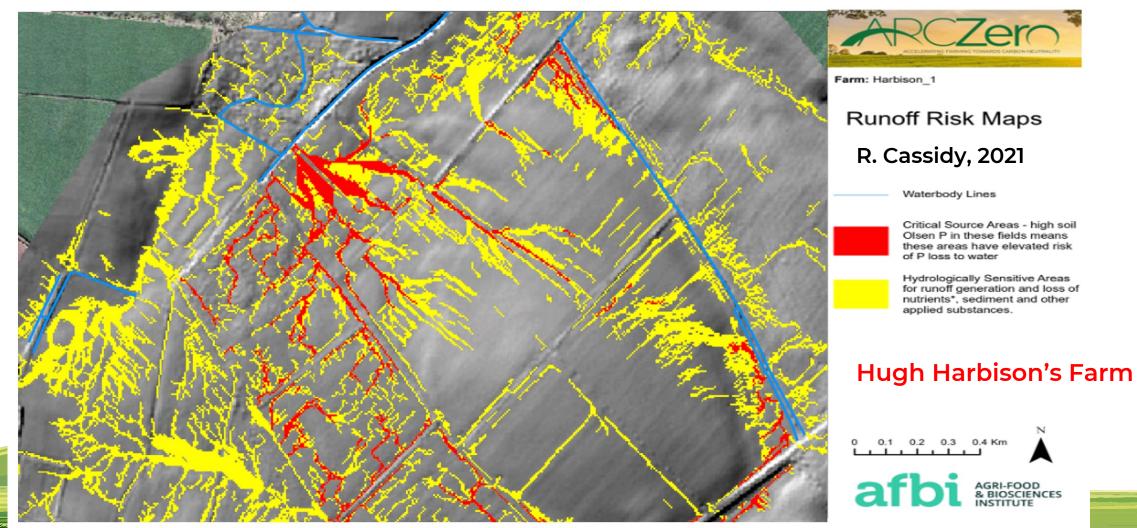
Prioritising & Giving Context to the Change required Globally

Source: UN FAO 2023 Pathways towards lower emissions (fao.org)

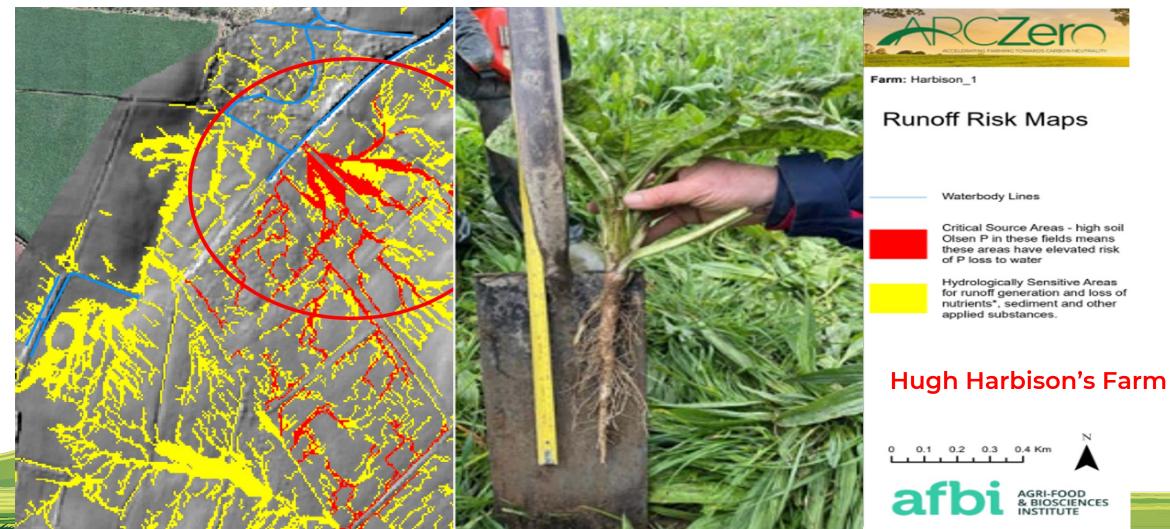
AHDE

The Resultant Behavioural Change after two years.....

Comparison between 2021 & 2023, gross emission/unit of output


GHG Reduction 2021 to 2023	Enterprises	2021	2023	% Reduction in GHGs
Ian McClelland	Dairy	1.3kg CO2e/kg FPC Milk	1.1kg CO2e/kg FPC Milk	13%
Hugh Harbison	Dairy	1.25kg CO2e/kg FPC Milk	1.2kg CO2e/kg FPC Milk	4%
John Egerton	Beef & Sheep	32.8kg CO2e/kg dwt	25.6kg CO2e/kg dwt	22%
Roger & Hilary Bell	Lamb	22kg CO2e/kg dwt	15.7kg CO2e/kg dwt	28%
Simon Best	Wheat	0.99kg CO2e/kg grain	0.47kg CO2e/kg grain	53%

- **Determining Factors Price of Fertiliser**
 - Sowing of legumes
 - Health of Livestock
 - Weather



Delivering Multiples of Natural Capital, Simultaneously Using LiDAR & Phosphate Soil Surveys to create "Run Off Risk" Maps

Delivering Multiples of Natural Capital, Simultaneously Multi Species Pastures – Water Infiltration, Biodiversity, Carbon Sequestration

Willow SRC (28 Yrs. Old)

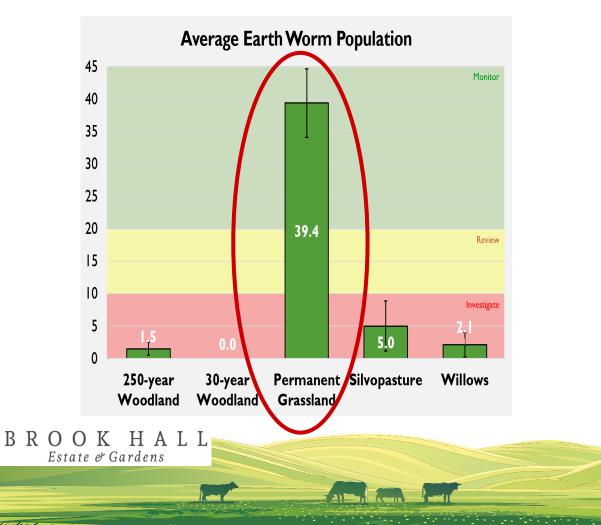
D. Woodland (30 Yrs. Old)

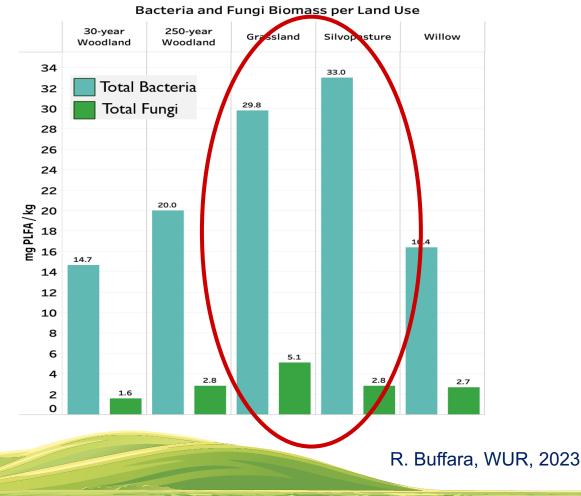
COMPARING DIFFERENT LAND USES

Permanent Pastureland (200 Yrs. Old)

B R O O K H A L L Estate & Gardens

R. Buffara, WUR, 2023


Silvopasture (120 Yrs. Old)



D. Woodland (250 Yrs. Old)

Delivering Multiple Public Goods Simultaneously Role of Livestock Faeces.... In Increasing Soil Biodiversity.....

Delivering Multiple Public Goods Simultaneously

The Importance of Increasing Biodiversity Under the Soil.... 3 New Papers....

The age of extinction More than half of Earth's species live in the soil, study finds

Soil estimated to be home to 90% of world's fungi, 85% of plants and more than 50% of bacteria, making it the world's most species-rich habitat

National Academy of Science, Aug 23

Cessation of grazing causes biodiversity loss and homogenization of soil food webs

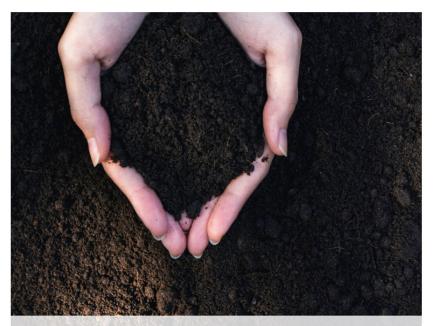
Maarten Schrama^{1,2}, Casper W. Quist^{3,4}, G. Arjen de Groot⁵, Ellen Cieraad^{1,6}, Deborah Ashworth², Ivo Laros⁵, Lars Hestbjerg Hansen^{7,8}, Jonathan Leff^{9,10}, Noah Fierer^{9,10} and Richard D. Bardgett² Oct 2023

Review

The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review


Arne Brummerloh ^{1,*} and Katrin Kuka ²

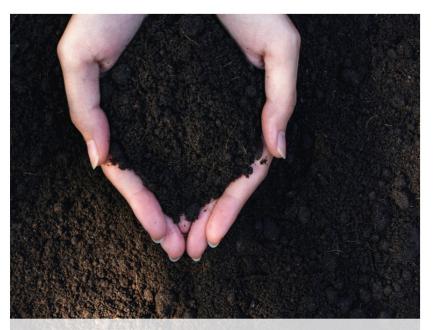
Dec 2023



BRO

Role of Diverse Root Architecture.... Monocultures' Root Structure Struggling...

Is this Ambition Possible at a Regional Level.....



AGRI-FOOD & BIOSCIENCES INSTITUTE Agriculture, Environment and Rural Affairs www.deerer.fsoud

- Carried out over four years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run off Risk Maps
- Opened May 2022, plan to repeat every five years
- 92% Farmer uptake in Zone One (25% of N. Ireland)
- Soil Nutrient Health Scheme | Agri-Food and Biosciences Institute (afbini.gov.uk)

Is this Ambition Possible at a Regional Level.....

- £38m N. Ireland Scheme to base line every field, tree & hedge
- Carried out over four years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run off Risk Maps
- Opened May 2022, plan to repeat every five years
- 92% Farmer uptake in Zone One (25% of N. Ireland)
- Soil Nutrient Health Scheme | Agri-Food and Biosciences Institute (afbini.gov.uk)

Essential..... Government Recognition..... Measuring, Reporting & Verification is a Public Good

FAO, Achieving Zero Hunger: A Global Road Map, COP 28

Achieving SDG2 without breaching the 1.5C threshold: A Global Roadmap

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

COP28 2 0 2 3 Roadmap vol.1 Presenting a global vision COP29 2 0 2 4 Roadmap vol.2 Moving from a global to a

regional view and from a vision to costing and financing COP30 2 0 2 5 Roadmap vol.3 Establishing country action

plans, monitoring and accountability

FAO, Achieving Zero Hunger: A Global Road Map, COP28

Achieving SDG2 without breaching the 1.5C threshold: A Global Roadmap

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

	Activity	Target Year	Description
	Livestock	2030	Methane Emissions Reduced by 25%, compared to 2020
$\boldsymbol{<}$	Livestock	2050	Total Livestock Productivity Growth, 1.7% per year, Globally
	Crops	2050	Total Crop Productivity Growth, 1.5% per year, Globally
	Crops	2050	Total Crop Productivity Growth, 2.3% per year, Low-income Countries
	Enabling Healthy Diets for all	2030	All Countries to update Food Dietary Guidelines & context on Quantity & Dietary Patterns
	Enabling Healthy Diets for all	2030	All Countries have Legislation Restricting Food Advertisments targeting Children
	Forests & Wetlands	2025	Zero Global Net-Deforestation achieved
	Forests & Wetlands	2035	Zero Global Gross-Deforestation achieved
	Soil & Water	2030	Achieve Universal & Equitable access to Safe & Affordable Drinking Water for all
	Soil & Water	2040	Additional 10 Gega Tonnes of CO2e Sequestered in Crop & Pastureland Soil between 2025 & 2050
	Food Loss & Waste	2030	50% Reduction of Global Food Waste at Retail & Consumer levels
	Food Loss & Waste	2050	All Food Loss & Waste Integrated into Circular Bioeconomy, or used for Feed & Soil Enhancement

FAO, Achieving Zero Hunger: A Global Road Map, COP28

Achieving SDG2 without breaching the 1.5C threshold: A Global Roadmap

Accelerated climate actions can transform agrifood systems and help achieve food security and nutrition both today and tomorrow.

Activity	Target Year	Description				
Livestock 2030		Methane Emissions Reduced by 25%, compared to 2020				
Livestock	2050	Total Livestock Productivity Growth, 1.7% per year, Globally				
Crops	2050	Total Crop Productivity Growth, 1.5% per year, Globally				
Crops	2050	Total Crop Productivity Growth, 2.3% per year, Low-income Countries				
Enabling Healthy Diets for all	2030	All Countries to update Food Dietary Guidelines & context on Quantity & Dietary Patterns				
Enabling Healthy Diets for all	2030	All Countries have Legislation Restricting Food Advertisments targeting Children				
Forests & Wetlands	2025	Zero Global Net-Deforestation achieved				
Forests & Wetlands	2035	Zero Global Gross-Deforestation achieved				
Soil & Water	2030	Achieve Universal & Equitable access to Safe & Affordable Drinking Water for all				
Soil & Water	2040	Additional 10 Gega Tonnes of CO2e Sequestered in Crop & Pastureland Soil between 2025 & 2050				
Food Loss & Waste	2030	50% Reduction of Global Food Waste at Retail & Consumer levels				
Food Loss & Waste	2050	All Food Loss & Waste Integrated into Circular Bioeconomy, or used for Feed & Soil Enhancement				

Adjudicates on Australian Carbon Credit Units

Adjudicates on Australian Carbon Credit Units

1st farm in Australia only approved in 2023

SOC measured to 1 metre, 7 years apart

New soil carbon credit issuance becomes Australia's largest ever with 94,666 ACCUs

Beef Central, 26/09/2023

Carly and Grant Burnham have become the latest to be issued soil carbon credits, with a record 94,666 Australian Carbon Credit Units. Photo: supplied

The 7th farm Since June 2023 94,666 ACCUs @ AUS\$93/t = \$8,803,938 As a Result Of Regenerative

Farming....

New soil carbon credit issuance becomes Australia's largest ever with 94,666 ACCUs

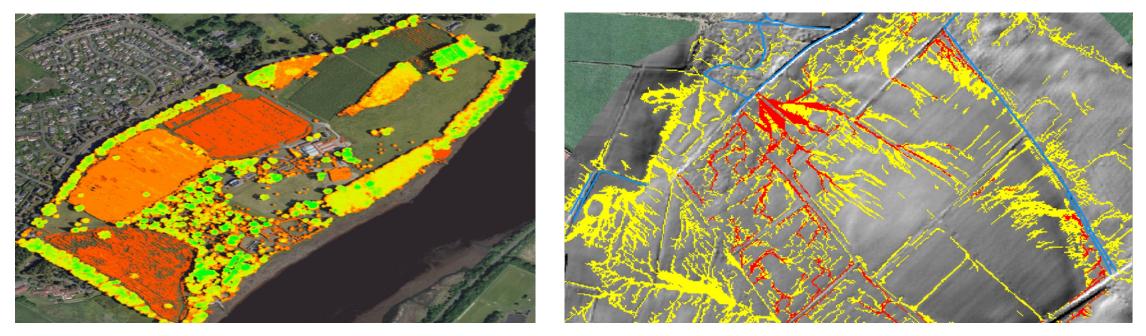
Beef Central, 26/09/2023

Carly and Grant Burnham have become the latest to be issued soil carbon credits, with a record 94,666 Australian Carbon Credit Units. Photo: supplied

The 7th farm Since June 2023 94,666 ACCUs @ AUS\$93/t = \$8,803,938 When the

Voluntary Carbon Market was AUS\$35/t

Closer to home..... EU Parliament Adopts Certification Framework For Carbon Removals in the Land Based Sector



Statement

With the adoption today by the European Parliament of its final report on a proposal to establish the first EU-level certification framework for carbon removals, Europe is making great strides in the right direction. As the Council also adopted its negation mandates last week, trilogue negotiations will get underway in the coming weeks, and on the right track.

The EU voluntary carbon framework aims to facilitate and speed up the deployment of high-quality mitigation and adaptation actions in the EU, including those originating from carbon farming practices. The European Parliament acknowledges that carbon farming is not just sequestration of carbon but also emissions' reductions from soil, and enteric and manure fermentation. Copa and Cogeca welcome this step in the right direction, which will enable more farmers to see the benefits of this system.

Sustainable Land Management – A New Approach Technology & Climate Change – The Potential for Impact on Land Value?

Empowering Land Owners & Farmers "To Know their Numbers".... Key to Delivering Net Zero & Optimisation of Land Value

john.gilliland@brookhall.org

B R O O K H A L L Estate & Gardens